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Abstract: 

The Indian summer monsoon is crucial for the country in various aspects, including 

agriculture, water resources, and economic stability. Hence, reliable monsoon forecasts are 

essential. INCOIS provides near real-time global analysis with the Global Ocean Data 

Assimilation System (GODAS), which was adopted from NOAA/NCEP in 2013. This 

analysis is used for the crucial initial conditions for the CFSv2 coupled model, which was 

used for the seasonal Indian Summer Monsoon Rainfall forecast. Accurate ocean 

initialization is required for better ISMR seasonal prediction. GODAS analysis was 

produced using the forcing fields from NCMRWF GFS atmospheric analysis. Bulk-

algorithm is used to compute turbulent heat and momentum fluxes using the near-surface 

NCMRWF analysis fields. Studies show that errors in the input fields, particularly near-

surface wind, air temperature (AT), and humidity, significantly affect the heat and 

momentum flux computation using a bulk algorithm. In this study, we evaluate near-surface 

wind, air temperature, and humidity from NCMRWF analysis with RAMA buoy 

observations. We further used NCMRWF reanalysis, ERA5 reanalysis, and satellite-derived 

CCMP wind products to quantify the spatial distribution of these fields as well. For AT and 

relative humidity (RH) we used OAFlux. The evaluation study shows that NCMRWF 

analysis products outperformed the other products when compared with buoy observations. 

Among the NCMRWF and ERA5 reanalysis products, NCMRWF outperformed. ERA5 

wind and AT underestimate the other products as well as buoy observations. For AT and RH, 

the RMSE, CC, and bias for all the products are the least in NCMRWF analysis, then 

NCMRWF reanalysis, OAFlux, and ERA5, respectively. CCMP wind performance is 

poorest in the wind field among all the products used in this study.   
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Evaluation of NCMRWF analysis fields using observational, reanalysis, and satellite 

observations 

Srinivasu Kotta, Hasibur Rahaman,  Anuradha Modi, Kameshwari Nunna, Hari Kumar  R, 

Sudheer Joseph, Balakrishnan Nair T.M 

Abstract: 

The Indian summer monsoon is crucial for the country in various aspects, including 

agriculture, water resources, and economic stability. Hence, reliable monsoon forecasts are 

essential. INCOIS provides near real-time global analysis with the Global Ocean Data 

Assimilation System (GODAS), which was adopted from NOAA/NCEP in 2013. This 

analysis is used for the crucial initial conditions for the CFSv2 coupled model, which was 

used for the seasonal Indian Summer Monsoon Rainfall forecast. Accurate ocean 

initialization is required for better ISMR seasonal prediction. GODAS analysis was 

produced using the forcing fields from NCMRWF GFS atmospheric analysis. Bulk-

algorithm is used to compute turbulent heat and momentum fluxes using the near-surface 

NCMRWF analysis fields. Studies show that errors in the input fields, particularly near-

surface wind, air temperature, and humidity, significantly affect the heat and momentum flux 

computation using a bulk algorithm. In this study, we evaluate near-surface wind, air 

temperature, and humidity from NCMRWF analysis with RAMA buoy observations. We 

further used NCMRWF reanalysis, ERA5 reanalysis, and satellite-derived CCMP wind 

products to quantify the spatial distribution of these fields as well. For air temperature (AT) 

and relative humidity (RH) we used OAFlux. The evaluation study shows that NCMRWF 

analysis products outperformed the other products when compared with buoy observations. 

Among the NCMRWF and ERA5 reanalysis products, NCMRWF outperformed. ERA5 

wind and air temperature underestimate the other products as well as buoy observations. For 

AT and RH, the RMSE, CC, and bias for all the products are the least in NCMRWF analysis, 

then NCMRWF reanalysis, OAFlux, and ERA5, respectively. CCMP wind performance is 

poorest in the wind field among all the products used in this study.   
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1. Introduction: 

Models are invaluable tools for understanding the ocean-atmosphere system, its interactions, 

and future climate scenarios, as well as for short-term forecasts of phenomena like cyclones, 

ocean states, and heatwaves. Depending on the objectives, various types of models are 

utilized. Ocean General Circulation Models (GCMs), such as Princeton Ocean Models 

(POMs), Regional Ocean Models (ROMs), Modular Ocean Models (MOMs), Hybrid 

Coordinate Ocean Models (HYCOMs), and others, were used by different operational, 

research organizations ,and academia to comprehend ocean processes and anticipate future 

ocean states. These models differ primarily in parametrization schemes, grid types, and other 

characteristics. Besides methodology, the quality of input data, including surface boundary 

forcing fields, significantly influences ocean model simulations (Goswami and Rajgopal 

2003). Surface heat and momentum fluxes are pivotal parameters in the surface boundary 

conditions of ocean models, with wind speed, air temperature, and humidity crucial for 

estimating turbulent heat fluxes. These fluxes are integral to air-sea interaction processes at 

the ocean-atmosphere interface, driving ocean models.   

 The primary sources of atmospheric and ocean surface observations integrated with 

model output for analysis data include remote sensing data, ship measurements, buoy 

observations, radiosonde data, pilot balloon data, and outputs from numerical models. These 

diverse sources of observational data are assimilated into model simulations to enhance the 

accuracy and reliability of the analysis data, providing valuable insights into weather and 

oceanic conditions. Since 1994, the NCMRWF has been providing atmospheric analysis 

products to leading operational centers in India, such as INCOIS and IMD. Initially, 

NCMRWF utilized the National Center for Environmental Prediction (NCEP) Global 

Forecast System (GFS) for analysis and forecasting. In 2012, NCMRWF started the 

NCMRWF Unified Model (NCUM) with the support of UK Met Office. The GFS and 

NCUM systems have undergone multiple upgrades over the years to incorporate 

advancements in science and technology (Prasad et al., 2016, Sumit et.al., 2016). Ensuring 

the quality of model analyses is pivotal, as they are used for numerous applications, 

including serving as external atmospheric forcing in ocean or sea ice models.  

 Previous studies, such as those by Goswami and Rajgopal (2003), evaluated the 

NCMRWF analysis winds with reference to the QuickSCAT satellite winds over the Indian 

Ocean. They observed a high bias over the equatorial region and noted improvements in 

wind accuracy after the simulation of precipitation by the forecast model. Similarly, Sanjib 

et al. (2009) evaluated the ECMWF and NCEP winds using QuickSCAT level 2 and level 3 

winds. They reported that ECMWF and NCEP analysis winds exhibited biases over the 
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regions from 10°S to 20°S and 5°S to 20°S, respectively. Prediction of the future state of the 

atmosphere/ocean by models highly depends on the initial and boundary conditions (analysis 

data) used by the model. Hence, the validation of analysis data is crucial for model 

performance, as it helps identify errors and biases. By validating the data, valuable feedback 

can be obtained to improve model accuracy and reliability, which is essential for producing 

accurate weather forecasts and analyses. 

 The Indian National Centre for Ocean Information Services (INCOIS) uses 

NCMRWF analysis data to force OGCMs and wave models for various operational services. 

The National Centre for Medium-Range Weather Forecasting (NCMRWF-GFS) analysis has 

been evaluated in the Indian region over two years (2019-2020). The verification of the 

analysis was conducted against the RAMA buoy observations, reanalysis, and satellite-based 

datasets. RAMA(Research Moored Array for African-Asian-Australian Monsoon Analysis 

and Prediction) buoy observations, available over specific regions at 6-hourly intervals, 

provided a critical reference point. To evaluate the performance of NCMRWF data, two 

years (2019, 2020) of NCMRWF analysis data were collocated with RAMA buoy, reanalysis, 

and satellite-based data. This evaluation was conducted quantitatively using several 

statistical measures. The statistical errors were estimated using the two years of collocated 

data for NCMRWF and buoy surface zonal (u) and meridional (v) wind components, wind 

speed (ws), air temperature(AT) , and humidity (RH or Qa).  

2. Data and Methods: 

 To evaluate the accuracy of the NCMRWF analysis products (wind, AT, and RH), we 

used observations from the Research Moored Array for African–Asian–Australian Monsoon 

Analysis and Prediction (RAMA) buoys (McPhaden, 2009). Figure 1 illustrates the 19 

RAMA buoy station datasets utilized for this study during 2019 and 2020. The comparisons 

are limited to buoy-measured quantities, including zonal (U) and meridional (V) winds, air 

temperature (AT), and relative humidity (RH). Additionally, data from NCMRWF-analysis, 

NCMRWF-reanalysis, ERA5, and CCMP3 are compared with the RAMA buoy data. 

Conversely, NCMRWF-analysis winds are compared to NCMRWF reanalysis, ERA5 

reanalysis, and CCMP3 winds. 
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Table 1: Brief description of different datasets used to evaluate winds for the study 

 

S.No Data source Temporal 

resolution 

Spatial 

resolution 

1. NCMRWF 

Analysis 

NCMRWF 6 hr/daily 0.25° 

2 RAMA 

buoy 

https://www.pmel.noaa.gov/tao/drupal/disdel/ Daily - 

3 ERA5 https://cds.climate.copernicus.eu/ 1 hr/daily 0.25° 

4 NCMRWF 

Reanalysis 

https://rds.ncmrwf.gov.in/ 1 hr/daily 0.11° 

5 CCMP3.0 https://data.remss.com/ccmp/ 6 hr/daily 0.25° 

 
Table 2: Datasets used to evaluate the AT, Humidity: 

 

S.No 

 

Data 

 

source 

 

Temporal 

resolution 

 

Spatial 

resolution 

 

Height(m) 

1. 

 

NCMRWF 

Analysis 

NCMRWF 6 hr/daily 0.25° 2m 

2 RAMA buoy https://www.pmel.noaa.go

v/tao/drupal/disdel/ 

daily - 3m 

3 OAFlux http://apdrc.soest.hawaii.e

du/data/data.php 

1 hr/daily 

 

1° 

 

2m 

4 

 

ERA5 https://cds.climate.coperni

cus.eu/ 

 

6 hr/daily 

 

0.25° 

 

2m 

5 NCMRWF 

Reanalysis 

https://rds.ncmrwf.gov.in/ 1 hr/daily 0.11° 2m 

 

 

2.1 NCMRWF-Analysis forcing fields: 

 Two different global Data Assimilation (DA) systems are operational at NCMRWF, 

i,e NCMUM and GFS. GFS-based GSI-4DEnVar systems provide the initial conditions for 

the IMD GFS NWP system. This NCEP-based DA system is implemented at NCMRWF and 

upgraded periodically. The GSI-4DEnVar DA system is a 4-Dimensional Ensemble 

Variational Data Assimilation System, which uses the ensemble perturbations for estimating 

the 4-dimensional error covariances during the minimization process of DA. The GSI-
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4DEnVar at NCMRWF uses the 80 member ensembles to update the error covariances. This 

DA system at NCMRWF produces analysis (model initial conditions) at a 6-hourly interval, 

by running 6 hourly intermittent DA cycles ) (Prasad et al., 2016, John et al., 2016, Sumit 

Kumar et al., 2018 and Sumit Kumar et al., 2020). 

The DA resolution of this system is T576L64 (~25km horizontal over the tropics and 64 

hybrid-sigma pressure levels). The 6-hr forecast is used as the background or first guess for 

the analysis in the DA cycle. The assimilation time window used is +/- 3hr centred on the 

analysis hour. The 9hr forecast generated from the previous cycle is used for time 

interpolation of the asynoptic observations within the assimilation time window.  

 

2.2 NCMRWF IMDAA reanalysis: 

 NCMRWF IMDAA (Indian Monsoon Data Assimilation and Analysis) regional 

reanalysis data is fine horizontal resolution 12 km (N1024L70) upgraded from 17 km 

resolution (N768L70), which could be helpful to understand the Indian monsoon and its 

variability. The unified system of the U.K MET office is used in IMDAA. IMDAA uses the 

Unified Model and is configured with 63 vertical levels extending from near the surface to 

a height of ~40  km above sea level. The spatial domain of IMDAA extended from 30 E to 

120 E and 15 S to 45 N (Rani et al., 2021).  

 IMDAA uses the 4D-Var data assimilation method of the U.K Met Office based on 

Rawlins et al. (2007). The observations are available in the 6-h window of each assimilation 

cycle and are combined with the model background to produce a statistically optimal state 

of the Atmosphere. The linear perturbation forecast model in the 4D-Var uses a simplified 

model formulation with a lower grid spacing (~24 km), the a full Unified Model forecast is 

used to produce the background (~12 km) (Rani et al., 2021). Lateral boundary conditions 

(ERA-Interim) are taken from the ECMRWF. Sea surface temperature is specified from the 

Hadley Centre Ice and Sea Surface Temperature dataset version 2 (HadISST2). Soil moisture 

analysis produced by the Extended Kalman Filter (EKF) based land data assimilation system 

is used to update the soil moisture fields in every assimilation cycle. The detailed description 

of the NCMRWF IMDAA reanalysis preparation methodologies is detailed in Rani et al., 

2021 (and in https://rds.ncmrwf.gov.in/). The NCMRWF IMDAA reanalysis is called, from 

here onwards as NCMRWF reanalysis data. 

 

2.3 ERA5 reanalysis: 

 ERA5 is fifth-generation reanalysis data produced using 4D-Var data assimilation 

and model forecasts in CY41R2 of the ECMWRF Integrated Forecast System (IFS), with 

137 hybrid sigma/pressure levels in vertical as well as single (surface) level also. ERA5 data 
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has been available from 1940 to the present. ERA5 provides hourly, high spatial resolution 

(0.25° x 0.25°) global climate and atmospheric data. ECMRWF, ERA5 reanalysis (single 

level) data is utilized in the present study, and data is available from 1940 to the present 

(Hersbach et al., 2023). 

 

2.4 Cross-Calibrated Multi-Platform (CCMP3) data: 

 Cross-Calibrated Multi-Platform (CCMP3) winds product is the blended satellite 

product, which is independent of buoy data. No buoy data is included In the CCMP3 product. 

Scatterometry and imaging spectrometer winds are used in CCMP3 winds by using 

variational analysis method (ASCAT-B,C version winds are relaxed, used to evaluate the 

CCMP3 accuracy). Cross-Calibrated Multi-Platform wind product version 3 is generated to 

provide high-quality wind data that is both spatially and temporally continuous. The primary 

goal is to bridge any observational gaps to offer a comprehensive understanding of wind 

patterns in the remote sensing era over both short and long periods. CCMP3 winds data is 

available from 1993 to 2019 with 0.25 spatial resolution (Carl et al., 2022, Wang et al., 2023). 

 

2.5 OAFlux data: 

 The OAFlux project creates high-quality datasets for air temperature and specific 

humidity near the sea surface by integrating satellite observations and numerical weather 

prediction (NWP) model outputs (Yu et al., 2008). Satellite data, including infrared sensors 

for air temperature and microwave radiometers for specific humidity, provide high-

resolution and accurate measurements. These are supplemented by NWP models, such as 

those from NCEP and ECMWF, which offer comprehensive global coverage and temporal 

consistency. The integration process employs advanced objective analysis techniques to 

merge satellite and NWP data, minimizing errors and ensuring a consistent dataset. Buoy 

data are used for bias correction, comparing satellite and model outputs with accurate in situ 

observations to adjust any discrepancies. The final data are processed into a 1°×1° resolution 

grid. This rigorous methodology ensures that the OAFlux data for air temperature and 

specific humidity are both accurate and reliable, which is crucial for analysing ocean-

atmosphere interactions. Buoy data are used for validation purposes but are not directly 

integrated into the final gridded datasets. OAFlux has provided the data from 1985 to 2022. 

OAFlux air temperature and specific humidity variables are validated using RAMA buoy 

data and compared with NCMRWF analysis data  

The details of the variables and corresponding datasets used for the study, along with buoy 

locations, are listed in Table 1 and Table 2. 
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2.6 Height corrections: 

 For Comparing the model with the observation, the model winds are brought to 

RAMA buoy height (4m) using  empirical logarthimic profile method (Peixoto et al., 1992, 

Anuradha et al., 2021). 

    𝑈(10) = 𝑈(ℎ)
𝑙𝑛(10 𝑧⁄ 0)

𝑙𝑛(ℎ 𝑧⁄ 0)
 

U(h) is the observed wind speed at height of h(4 m) 

u(10) is the estimated wind speed at the 10m height 

z0 is the roughness length (m) =1.52 x 10^-4 

The statistics in terms of mean, bias, RMSE Pearson Correlation Coefficient, etc., 

are computed for surface zonal (u) and meridional (v) wind components, Air Temperature, 

and Specific Humidity.  

 The air temperature and specific humidity have been converted to '3' m considering 

stability using the empirical formulation of Monin-Obukhov similarity theory given in Large 

and Pond (1981, 1982). The corresponding algorithm has been obtained from Kameshwari 

et al. 2022 and the corresponding python code is obtained from 

'https://github.com/kameshwari1991/Meteorology-AWS-data-processing-height-

correction-'. 

The statistics in terms of mean, bias, RMSE and Pearson Correlation Coefficient etc. 

are computed for surface zonal (u) and meridional (v) wind components, Air Temperature 

and Specific Humidity. Error estimation formula are given below in equations form, 

 

𝑀𝑒𝑎𝑛 =
1

𝑁
∑ 𝑋𝑖

{𝑁}
{𝑖=1}  -------------Eq(1) 

 

𝐵𝑖𝑎𝑠 =
1

𝑁
∑ (𝑀𝑖 − 𝑂𝑖)

{𝑁}
{𝑖=1} ---------Eq(2) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑂𝑖 − 𝑀𝑖)2𝑁

𝑖=1 ----------Eq(3) 

 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =  
∑(𝑋𝑖−𝑋̅)(𝑌−𝑌̅)

√∑(𝑋𝑖−𝑋̅)
2

.√∑(𝑌𝑖−𝑌̅)
2
---------------Eq(4) 

 

Here, 

N-Total number of Samples, Xi-Individual data point, Mi-Model-predicted value at sample 

i, Oi-Observed value at sample i, 𝑋̅ − 𝑖𝑠 𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 of X, 𝑌̅ − 𝑖𝑠 𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 of Y 
 

The annual and seasonal mean plots are generated at a given resolution. NCMRWF 

reanalysis data and OAFlux data are regridded to same spatial resolution of the NCMRWF 

analysis fields, and the spatial bias, standard deviation, and correlation are computed. 
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3. Results: 

To evaluate the analysis/forcing fields, we compared the analysis winds with in-situ, 

reanalysis, and satellite-based data. In Addition to this, we compared the analysis, 

reanalysis, and satellite-based data with in-situ data. We first compared the NCMRWF 

analysis, NCMRWF reanalysis, ERA5 reanalysis, and CCMP3 (satellite-based) wind data 

with in-situ RAMA-buoy winds across the Indian Ocean. The locations of the RAMA 

buoys are depicted in Figure 1. 

 

Figure 1: Location map of Rama buoys (Yellow Triangles) used for evaluating NCMRWF Analysis 

3.1 Validation of winds:  

The comparison was carried out for the years 2019 and 2020 (CCMP3 data is only 

available for 2019). Table 3 shows the statistics i,e bias, RMSE, Correlation Coefficients 

(CC) etc. The locations of the RAMA buoys and the number of days for which data was 

available for each buoy during the study period are also shown in Table 3. The spatial and 

temporal resolution of the analysis fields, reanalysis, and satellite-based data are provided in 

Table 1, respectively. The time series of zonal, meridional, and wind speeds of all the data 

sets, along with RAMA buoy winds at 4ºN 67ºE  and 1.5ºN 67ºE are shown in Figure 2 and 

3. It can be seen that all the products are able to capture the daily variability when compared 

with buoy observation. These two locations are located in two important regions of the 

Indian Ocean. One is located in the thermocline dome region where unique open ocean 

upwelling occurs and witnesses one of the strongest air-sea interaction regions, and another 

one is in the equatorial Indian Ocean where Wyrtiki Jets presents with the strong inert-
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monsoon current. The statistics for all the buoy locations between NCMRWF analysis fields 

and buoy winds can be seen in Table 3.  

 

Figure 2: Buoy(obs), NCMRWF analysis (NC-Ana), NCMRWF reanalysis(NC-Reana), ERA5 

reanalysis and CCMP3 data a) Zonal, b) Meridional and c) Wind speed at 4°N 67°E 

 

Figure 3: Buoy(obs), NCMRWF analysis (NC-Ana), NCMRWF reanalysis(NC-Reana), ERA5 

reanalysis and CCMP3 data a) Zonal, b) Meridional and c) Wind speed at 1.5°N 67°E 
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Figure 4: Buoy(obs), NCMRWF analysis (NC-Ana) data a) Zonal, b) Meridional and c) Wind 

speed at 5°S 95°E 

  

Figure 5: Buoy(obs), NCMRWF analysis (NC-Ana) data a) Zonal, b) Meridional and c) Wind 

speed at 8°S 95°E 
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Figure 6: NCMRWF Analysis (NC-Ana): (a) Zonal wind, (b) Meridional wind, and (c) Wind speed 

at 4 m and 10 m heights, at 1.5°N 67°E. 

 

Figure 7: NCMRWF Analysis (NC-Ana): (a) Zonal wind, (b) Meridional wind, and (c) Wind speed 

at 4 m and 10 m heights, at 5°S 95°E. 
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Figure 8: NCMRWF Analysis (NC-Ana): (a) Zonal wind, (b) Meridional wind, and (c) Wind speed 

at 4 m and 10 m heights, at 8°S 95°E. 

 

 

Figure 9: Same as figure 8, zoomed from June to December, 2019. 
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Figures 4 and 5 show the time series comparisons for the NCMRWF analysis, RAMA 

buoy observed winds at the locations 5 ºS 95 ºE and 8 ºS 95 ºE. It can be seen although the 

analysis wind is able to capture the buoy observed variations but, most of the time its unable 

to capture the higher values. It's worth noting that the height of all the winds has been 

corrected from 10m to 4m (buoy height). The 4 m and 10 m wind comparisons are shown in 

Figure 6-9. No significant change of wind between 4 m and 10 m height is observed. 

However, in zonal wind during summer monsoon time noticeable differences can be seen at  

5°S 95°E  and 8 ºS 95 ºE.   Notably, the winds at 10m tend to be higher than those at 4m due 

to friction variability, with the difference between the two being minimal.  

 

Figure 10: RMSE between Observed Winds with ERA5, NCMRWF Reanalysis, and CCMP Winds: 

a) Zonal winds, b) Meridional winds, and c) Wind speed. 
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Figure 11: Bias between Observed Winds with ERA5, NCMRWF Reanalysis, and CCMP Winds: a) 

Zonal winds, b) Meridional winds, and c) Wind speed. 

 

 

Figure 12: Correlation between Observed Winds with ERA5, NCMRWF Reanalysis, and CCMP3 

Winds: a) Zonal winds, b) Meridional winds, and c) Wind speed. 
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Previous studies have validated the satellite winds (Anuradha et al., 2021), Reanalysis winds 

(Dora et al., 2019, Rani et al., 2020) with in-situ (OMNI buoy and RAMA buoy) 

observations, satellite and analysis winds (Sanjib et al., 2009). Offshore buoy wind 

observations were well matched with satellite winds compared to the coastal buoys; the 

performance of all reanalysis winds is good and reliable in capturing the direction and speed 

in the Indian Ocean (Dora et al., 2019). Analysis winds showed good agreement with in-situ 

and satellite winds at northern Indian Ocean (Bay of Bengal and Arabian Sea) and the 

equatorial Indian Ocean (Goswami and Rajgopal 2003, Sanjib et al., 2009). Furthermore, 

precipitation bias correction led to improvements in the analysis winds, reducing the bias to 

less than 0.5 m/s. The continuous improvement in methodology in data assimilation 

minimize the deviation between observed and analysis further reanalysis and model winds. 

Figure 10 displays the root mean square error (RMSE) of NCMRWF reanalysis, ERA5 

reanalysis, and CCMP3 datasets for the zonal, meridional, and wind speed components with 

buoy winds at respective buoy locations. Similarly, biases are depicted in Figure 11, while 

correlations are illustrated in Figure 12. In the present study, high zonal and meridional wind 

biases, along with high RMSE, are observed in the southeast equatorial Indian Ocean region 

between the buoy and NCMRWF analysis winds, compared to the other buoys (Figure 10 & 

11) as compared to other reanalysis and satellite-derived products. However,  for all other 

buoy locations, NCMRWF analysis shows the lowest RMSE ( ~ 0.75 m/s), and CCMP shows 

the highest RMSE ( ~ 1.75 m/s). The opposite trend can be found for the CC plots see Figure 

12.  

 Bias, RMSE, and correlation values between the buoy data and NCMRWF 

reanalysis, ERA5 reanalysis, and CCMP3 zonal, meridional, and wind speed are presented 

in Tables 4, 5, and 6, respectively. The NCMRWF analysis wind data demonstrate low 

RMSE with buoys (less than 1.25 m/s), except for those located in the southeastern 

equatorial Indian Ocean, specifically at 5°S 95°E and 8°S 95°E, as depicted in Figure 10. 

After NCMRWF analysis data, NCMRWF reanalysis exhibits the lowest RMSE with the 

buoys, followed by ERA5 reanalysis and then CCMP3. However, ERA5 reanalysis zonal 

wind and wind speed data also show higher RMSE at 5°S 95°E and 8°S 95°E compared to 

the remaining buoys. 

 The zonal wind bias ranges from -0.3 to 0.3 m/s at 18 out of 19 buoys for NCMRWF 

analysis zonal wind compared to buoy zonal wind. The exception is the buoy at 8ºS 95ºE, 

where the bias is 0.74 m/s (Figure 11a). Similarly, the meridional wind bias ranges from -0.3 

m/s to 0.1 m/s at 15 out of 19 buoys, except for those at 5°S 95°E (-0.67 m/s), 8ºS 95ºE (-

0.56 m/s), 0ºN 80.5ºE (-0.44 m/s), and 1.5S67E (-0.4 m/s) (Figure 11b). The wind speed bias 

ranges from -0.5 m/s to 0.1 m/s at 17 out of 19 buoy locations, with exceptions at 85°S 95°E 



19 

(-1.4 m/s) and 5°S 95°E (-1.2 m/s) (Figure 11c). Alongside NCMRWF analysis, ERA5 

reanalysis zonal wind also demonstrates a low bias with buoy zonal wind (Figure 11a), 

followed by NCMRWF reanalysis and CCMP3 zonal wind with buoy zonal wind. All the 

datasets, including NCMRWF analysis, NCMRWF reanalysis, ERA5 reanalysis, and 

CCMP3, exhibit similar values of meridional wind bias with buoy meridional winds (Figure 

11b). However, CCMP3 meridional wind exhibits low bias with the buoy at a few locations. 

At most locations, all the datasets underestimate the wind speed compared to buoy wind 

speed, resulting in a negative bias. However, the maximum bias between buoy wind speed 

and NCMRWF analysis, NCMRWF reanalysis, ERA5 reanalysis, and CCMP3 wind speeds 

are observed at 5ºS 95ºE and 8ºS 95ºE. CCMP3 wind speed exhibits the lowest wind speed 

bias with the buoy at most buoy locations (Figure 11c).  

 The correlation of zonal wind (Figure 12a), meridional wind (Figure 12b), and wind 

speed (Figure 12c) between the buoy and NCMRWF analysis, NCMRWF reanalysis, ERA5 

reanalysis, and CCMP3 are shown in Figure 12. Overall, NCMRWF analysis of zonal and 

meridional winds exhibit a good correlation with buoy zonal, meridional winds. Zonal wind 

correlation coefficients exceeding 0.9 at 17 out of 19 buoy locations. However, correlations 

are less than 0.9 at 5°S 95°E and 8°S 95°E, with zonal wind correlation coefficients of 0.84 

and 0.88, and meridional wind correlation coefficients of 0.77 and 0.80, respectively. 

Followed by NCMRWF analysis data, ERA5 reanalysis, NCMRWF reanalysis, and CCMP3 

zonal and meridional winds are showing good correlations with buoy zonal and meridional 

winds (Figure 12a, b). The NCMRWF analysis of meridional wind correlation with buoy 

meridional wind shows the lowest correlation coefficient of 0.81 at 0ºN 67ºE (shown in Table 

3). 

 The wind speed correlations between the buoy and NCMRWF analysis, NCMRWF 

reanalysis, ERA5 reanalysis, and CCMP3 are depicted in Figure 12c . NCMRWF analysis 

wind speed exhibits a high correlation with buoy wind speed at all locations compared to the 

remaining above data sets; however, the lowest correlation is observed at 0ºN 67ºE and 5ºS 

95ºE, with correlation coefficients of 0.87 and 0.88, respectively. Following NCMRWF 

analysis, wind speed, ERA5, NCMRWF reanalysis, and CCMP3 wind speeds demonstrate 

good correlations with buoy wind speed. Similar to zonal and meridional wind speeds, 

CCMP3 exhibits the least correlation with buoy wind speed compared to the other datasets. 

  NCMRWF analysis data exhibits a strong agreement with buoy data, characterized 

by low RMSE and high correlation, compared to other reanalysis and remote sensing 

datasets. However, zonal and meridional winds show higher RMSE and lower correlation at 

5ºS 95ºE and 8ºS 95ºE as compared to other products. CCMP3 data demonstrates higher 

RMSE and lower correlation with buoy data across most locations compared to the other 
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datasets. Notably, CCMP3 winds do not incorporate buoy data in their generation, potentially 

contributing to the observed higher RMSE and lower correlation with buoy observations 

compared to analysis and reanalysis datasets. 

Figures 13, 14, and 15 illustrate the frequency distributions of zonal wind, meridional 

wind, and wind speeds for both buoy and NCMRWF analysis data. The zonal wind frequency 

distribution mostly shows a skewed distribution pattern (Figure not shown). Over the central 

BoB a bimodal distribution pattern is observed with two peaks at ~ 4-5 m/s and  ~  -3 to -4 

m/s  (Figure 13, e.g., b)12ºN 90ºE). Similar bi-modal distribution can be seen in meridional 

wind as well (Figure 14, e.g., b)12ºN 90ºE) . This unique bi-modal distribution could be due 

to the two monsoon wind patterns during the southwest and northeast monsoon. 

 
Figure 13: Frequency distribution of RAMA buoy zonal wind speed (black-bar), and NCMRWF- 

analysis zonal wind speed (red-bar) at a)4°N 67°E, b)12°N 90°E, c)5°S 95°E, d) 8°S 95°E  

locations 
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Figure 14: Frequency distribution of RAMA buoy meridional wind speed (black-bar), and 

NCMRWF- analysis meridional wind speed (red-bar) at a)4°N 67°E, b)12°N 90°E, c)5°S 

95°E, d) 8°S 95°E locations 

 
Figure 15: Frequency distribution of RAMA buoy wind speed (black-bar), and NCMRWF- analysis 

wind speed (red-bar) at a)4°N 67°E, b)12°N 90°E, c)5°S 95°E, d) 8°S 95°E  locations 
  

The meridional wind frequency distribution exhibits skewed ness and normality at 

most locations, as well as a bimodal distribution away from the equator (Figure 15, e.g., 
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b)12ºN 90ºE). The buoy zonal wind and NCMRWF analysis zonal wind frequency 

distributions are well-matched; however, in the southeastern equatorial region at 5ºS 95ºE 

and 8ºS 95ºE, they exhibit the least agreement. At these locations, within the interval of -2 

m/s to 2 m/s, the NCMRWF analysis overestimates the occurrence of zonal wind speeds 

(Figure 13). Zonal wind speeds greater than 2 m/s and less than -2 m/s are underestimated 

by the NCMRWF analysis compared to buoy zonal wind occurrences. At the above two 

locations, the meridional wind frequency distribution exhibits the least agreement between 

the buoy and NCMRWF analysis meridional winds (Figure 14). The NCMRWF analysis 

overestimates the occurrence of meridional wind speeds ranging from -2 to 1 m/s at both 

locations. The least correlation between the buoy and NCMRWF analysis zonal and 

meridional wind speeds was observed at these two locations. 

The buoy wind speed and NCMRWF analysis wind speed frequency distributions are well-

matched (Figure 15), with most locations exhibiting a skewed, normal distribution. 

However, at many locations, the NCMRWF analysis overestimates the occurrence of wind 

speeds less than 2 m/s, with the largest discrepancy observed at 5ºS 95ºE and 8ºS 95ºE. 

Despite this, the correlations between buoy wind speed and NCMRWF analysis wind speed 

at both locations are 0.88 (the lowest correlation compared to the remaining locations) and 

0.91, respectively. 

Table 3: Statistics between buoy winds and NCMRWF analysis winds. N-number of 

observations 

  Zonal wind Meridional wind Wind speed  

S.No Location 
RMSE Cor BIAS- 

NC-UO RMSE Cor 

BIAS-

NC-VO RMSE Cor 

BIAS-

NC-OBS N 

1 4°S 57°E 0.98 0.93 -0.06 1.04 0.96 -0.05 0.80 0.91 0.07 297 

2 8°S 55°E 0.81 0.98 0.12 0.90 0.96 0.05 0.63 0.97 0.07 431 

3 8°N 67°E 0.74 0.99 0.24 0.82 0.96 0.02 0.68 0.95 -0.26 463 

4 4°N 67°E 0.90 0.97 0.21 0.95 0.94 0.11 0.83 0.91 -0.37 729 

5 1.5°N 67°E 1.18 0.95 0.29 1.09 0.91 -0.28 0.93 0.90 -0.45 730 

6 0°N 67°E 1.27 0.92 0.16 1.10 0.91 -0.24 0.95 0.87 -0.36 592 

7 1.5°S 67°E 1.10 0.95 -0.08 1.22 0.91 -0.40 0.89 0.89 -0.33 730 

8 4°S 67°E 1.01 0.97 -0.14 0.99 0.94 0.05 0.96 0.89 -0.14 678 

9 8°S 67°E 0.97 0.98 0.23 0.79 0.96 -0.04 0.81 0.95 -0.17 731 

10 12°S 67°E 0.80 0.98 0.26 0.86 0.96 0.05 0.81 0.96 -0.08 240 

11 0°N 80.5°E 0.99 0.95 -0.02 1.20 0.93 -0.44 0.84 0.91 -0.22 444 

12 

1.5°S 

80.5°E 1.06 0.94 -0.20 1.12 0.92 -0.28 0.80 0.90 -0.09 440 

13 4°S 80.5°E 1.10 0.97 -0.26 0.92 0.92 0.01 0.97 0.90 -0.33 730 

14 8°S 80.5°E 0.84 0.98 0.06 0.81 0.94 -0.11 0.82 0.94 -0.23 462 

15 

12°S 

80.5°E 0.81 0.97 -0.12 0.72 0.96 0.00 0.74 0.96 0.00 730 

16 15°N 90°E 0.74 0.98 0.11 0.91 0.98 0.14 0.76 0.96 -0.15 613 

17 12°N 90°E 0.85 0.99 0.19 0.97 0.98 0.01 0.89 0.95 -0.41 692 

20 5°S 95°E 2.33 0.85 -0.10 1.87 0.77 -0.67 1.87 0.88 -1.27 722 

21 8°S 95°E 2.11 0.89 0.74 1.67 0.80 -0.56 1.91 0.91 -1.40 709 
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Table 4: Statistics between buoy winds and NCMRWF reanalysis winds. N-number of observations 

  
 

Zonal wind Meridional wind Wind speed   

S.No Location RMSE Cor 

BIAS-NCR-

UO RMSE Cor 

BIAS-

NCR-VO RMSE Cor 

BIAS-

NCR-Obs N 

1 4°S 57°E 1.29 0.87 -0.06 1.52 0.91 0.21 1.21 0.80 0.00 297 

2 8°S 55°E 1.40 0.94 0.28 1.59 0.90 0.24 1.10 0.89 -0.08 431 

3 8°N 67°E 1.06 0.97 -0.08 1.29 0.90 0.11 1.05 0.87 -0.45 463 

4 4°N 67°E 1.22 0.94 -0.10 1.30 0.88 0.05 1.13 0.83 -0.49 729 

5 1.5°N 67°E 1.46 0.92 -0.03 1.39 0.84 -0.34 1.16 0.82 -0.53 730 

6 0°N 67°E 1.53 0.89 -0.19 1.36 0.85 -0.23 1.27 0.75 -0.42 592 

7 1.5°S 67°E 1.52 0.90 -0.45 1.57 0.84 -0.35 1.23 0.78 -0.42 730 

8 4°S 67°E 1.54 0.92 -0.39 1.48 0.87 0.20 1.42 0.75 -0.24 678 

9 8°S 67°E 1.35 0.95 0.00 1.33 0.90 0.17 1.22 0.88 -0.19 731 

10 12°S 67°E 1.38 0.93 0.06 1.28 0.91 0.19 1.17 0.91 0.04 240 

11 0°N 80.5°E 1.51 0.88 -0.22 1.48 0.89 -0.48 1.23 0.79 -0.26 444 

12 

1.5°S 

80.5°E 1.40 0.90 -0.36 1.41 0.88 -0.39 1.13 0.80 -0.14 440 

13 4°S 80.5°E 1.67 0.92 -0.51 1.41 0.81 -0.06 1.43 0.78 -0.41 730 

14 8°S 80.5°E 1.38 0.94 -0.20 1.24 0.85 -0.10 1.27 0.86 -0.17 462 

15 12°S 80.5°E 1.35 0.91 -0.12 1.20 0.89 -0.31 1.23 0.88 -0.12 730 

16 15°N 90°E 1.24 0.96 -0.17 1.15 0.96 0.19 1.06 0.92 -0.40 613 

17 12°N 90°E 1.26 0.97 -0.09 1.16 0.97 0.07 1.19 0.93 -0.70 692 

20 5°S 95°E 1.37 0.95 -0.31 1.61 0.83 -0.52 1.39 0.86 -0.32 722 

21 8°S 95°E 1.23 0.96 0.11 1.35 0.88 -0.45 1.29 0.90 -0.46 709 

 
 

Table 5: Statistics between buoy winds and ERA5 reanalysis winds. N-number of observations 

   Zonal wind Meridional wind Wind speed   

S.NO Location RMSE Cor 

BIAS-

E5-UO RMSE Cor 

BIAS-

E5-VO RMSE Cor 

BIAS-

ERA5-Obs N 

1 4°S 57°E 1.13 0.91 -0.16 1.21 0.93 0.01 1.09 0.83 -0.18 297 

2 8°S 55°E 1.14 0.96 0.08 1.17 0.94 0.09 0.96 0.91 -0.07 431 

3 8°N 67°E 0.96 0.98 0.13 1.12 0.92 0.06 0.93 0.89 -0.31 463 

4 4°N 67°E 1.08 0.96 0.10 1.16 0.91 0.12 1.04 0.87 -0.48 729 

5 

1.5°N 

67°E 1.26 0.94 0.15 1.23 0.87 -0.25 1.07 0.85 
-0.47 

730 

6 0°N 67°E 1.32 0.92 0.02 1.22 0.88 -0.17 1.08 0.83 -0.39 592 

7 1.5°S 67°E 1.30 0.92 -0.19 1.41 0.86 -0.30 1.10 0.83 -0.41 730 

8 4°S 67°E 1.28 0.94 -0.05 1.23 0.91 0.15 1.22 0.82 -0.28 678 

9 8°S 67°E 1.19 0.97 0.28 1.18 0.92 -0.03 1.11 0.91 -0.29 731 

10 12°S 67°E 1.24 0.95 0.27 1.10 0.93 0.05 1.11 0.92 -0.21 240 

11 

0°N 

80.5°E 1.24 0.92 0.07 1.38 0.91 -0.40 1.13 0.84 
-0.36 

444 

12 

1.5°S 

80.5°E 1.21 0.92 -0.11 1.31 0.89 -0.30 1.05 0.83 
-0.24 

440 

13 4°S 80.5°E 1.28 0.95 -0.07 1.22 0.85 0.00 1.18 0.85 -0.36 730 

14 8°S 80.5°E 1.16 0.96 0.21 1.12 0.88 -0.06 1.13 0.89 -0.27 462 

15 

12°S 

80.5°E 1.11 0.94 0.09 1.04 0.92 0.05 1.05 0.92 
-0.17 

730 

16 15°N 90°E 0.91 0.97 0.17 0.94 0.97 0.08 0.89 0.94 -0.15 613 

17 12°N 90°E 0.92 0.98 0.25 1.05 0.97 -0.03 0.93 0.94 -0.31 692 

20 5°S 95°E 1.33 0.95 0.03 1.38 0.88 -0.46 1.43 0.87 -0.60 722 

21 8°S 95°E 1.40 0.96 0.61 1.18 0.90 -0.36 1.46 0.89 -0.76 709 
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Table 6:Statistics between buoy winds and CCMP reanalysis winds. N-number of observations 

   Zonal wind Meridional wind Wind speed   

S.No Location 

RMS

E Cor 
BIAS-

UCMP-UO RMSE Cor 

BIAS-

VCMP-

VO 

RMS

E Cor 
BIAS-

CCMP-Obs N 

1 4°S 57°E 1.56 0.84 -0.07 1.64 0.90 0.14 1.46 0.74 0.36 297 

2 8°S 55°E 1.36 0.95 0.20 1.57 0.80 0.46 1.17 0.82 0.06 431 

3 8°N 67°E 1.10 0.79 -0.02 1.56 0.83 0.09 1.19 0.77 -0.04 463 

4 4°N 67°E 1.45 0.92 0.15 1.51 0.85 0.11 1.35 0.72 -0.19 729 

5 1.5°N 67°E 1.77 0.86 0.58 1.48 0.83 0.02 1.43 0.66 -0.12 730 

6 0°N 67°E 1.81 0.83 0.20 1.59 0.80 -0.06 1.42 0.66 0.04 592 

7 1.5°S 67°E 1.73 0.84 0.07 1.63 0.81 0.00 1.49 0.64 0.10 730 

8 4°S 67°E 1.60 0.91 0.19 1.53 0.85 0.17 1.52 0.71 0.01 678 

9 8°S 67°E 1.55 0.93 0.46 1.50 0.86 0.04 1.43 0.81 -0.04 731 

10 12°S 67°E 1.73 0.91 0.53 1.44 0.89 0.14 1.47 0.85 -0.17 240 

11 0°N 80.5°E 1.63 0.85 0.20 1.57 0.85 -0.08 1.41 0.69 0.03 444 

12 1.5°S 80.5°E 1.49 0.90 0.09 1.62 0.79 -0.22 1.40 0.72 0.11 440 

13 4°S 80.5°E 1.48 0.93 0.29 1.44 0.80 0.12 1.40 0.79 -0.07 730 

14 8°S 80.5°E 1.35 0.94 0.51 1.29 0.77 0.02 1.34 0.82 -0.24 462 

15 12°S 80.5°E 1.28 0.89 0.21 1.28 0.87 0.00 1.27 0.87 -0.16 730 

16 15°N 90°E 1.23 0.96 0.44 1.29 0.95 0.02 1.24 0.88 0.02 613 

17 12°N 90°E 1.20 0.97 0.25 1.29 0.96 0.00 1.09 0.93 -0.23 692 

20 5°S 95°E 1.49 0.94 0.14 1.56 0.83 -0.54 1.50 0.88 -0.75 722 

21 8°S 95°E 1.57 0.92 0.46 1.50 0.78 -0.29 1.44 0.83 -0.65 709 

 

3.2 Spatial variability of winds: 

In this section, we show how NCMRWF analysis data varies spatially with reanalysis and 

blended remote sensing data. NCMRWF analysis, NCMRWF, and ERA5 reanalysis data are 

available for 2019 and 2020, while CCMP3 is available only for 2019; hence, 2019 data is 

presented for comparison. During 2019, over the study region, annual average wind speed 

and wind direction from the above-mentioned data sources exhibited similar patterns (Figure 

16), with CCMP slightly stronger than other products. The annual average winds reveal that 

south-easterly trade winds dominate in the southern Indian Ocean from   15ºS to 5ºS, 

originating at the Mascarene High (at 30ºS).   The annual average wind speed indicates that 

high wind speeds are observed south of 10ºS, north of the equator to 15ºN along the Somalia 

coast, Arabian Sea, and southern Bay of Bengal, with the lowest wind speed observed at the 

equatorial belt and the north Sumatra coast.  
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Figure 16: Annual averaged wind speed overlaid with wind vectors for 2019: (a) NCMRWF 

Analysis, (b) NCMRWF Reanalysis, (c) ERA5, and (d) CCMP3. 

 

 

Figure 17: Seasonal averaged wind speed overlaid with wind vectors of NCMRWF analysis (a-d), 

NCMRWF reanalysis (e-h), ERA5 reanalysis (i-l), and CCMP3 (m-p) data. 
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 All four datasets exhibit the same aforementioned results. In the inter-comparison of 

NCMRWF-analysis (Figure 16a) and NCMRWF reanalysis, ERA5 reanalysis, and CCMP3 

(Figure 16b-16d), similar wind speeds are observed. ERA5 and CCMP3 show higher wind 

speeds at the Bay of Bengal compared to NCMRWF analysis and reanalysis. CCMP3 wind 

speed indicates higher wind speeds than NCMRWF analysis, NCMRWF reanalysis, and 

ERA5 in the equatorial region (60ºE-75ºE, 0ºN to 5ºN/5ºS). To determine whether the 

variations observed in the annual comparison are present at the seasonal scale, we conducted 

a seasonal analysis comparison (Figure 17). No significant difference is found on the 

seasonal wind pattern among the products other than annual mean comparison (Figure 17). 

Figure 18 shows the seasonal wind speed bias of NCMRWF analysis compared with 

NCMRWF reanalysis, ERA5, and CCMP3. CCMP3 exhibits a higher bias compared to 

NCMRWF and ERA5 reanalysis with respect to NCMRWF analysis wind speed. All datasets 

show a high bias during the southwest monsoon season. 

The zonal and meridional wind speed RMSE, bias, and correlation between 

NCMRWF analysis and NCMRWF and ERA5 reanalysis are depicted in Figure 19, 20. 

NCMRWF reanalysis and ERA5 demonstrate good correlation with NCMRWF analysis 

data, whereas they exhibit the least correlation with CCMP3 data. In summary, when 

compared with NCMRWF analysis data, NCMRWF reanalysis data exhibit high RMSE, 

whereas CCMP3 data (Figure not shown) show low RMSE. Similarly, NCMRWF reanalysis 

and ERA5 wind speed display positive bias, while CCMP3 exhibits a negative bias over the 

dominant region. Furthermore, ERA5 and NCMRWF reanalysis demonstrate high 

correlation, whereas CCMP3 shows the least correlation with NCMRWF analysis data. 

Across all datasets, a consistent pattern of least correlation was observed in the equatorial 

region when compared with NCMRWF analysis data. 
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Figure 18: Seasonal wind speed bias of NCMRWF reanalysis (a-d; NCana-NCreana), ERA5 

reanalysis (e-h; NCana-ERA5), CCMP3 (i-l;Ncana-CCMP3) with NCMRWF analysis wind 

speed. 

 
Figure 19: Statistics between NCMRWF-analysis and Re-analysis data (NCAna-NCReana), 

RMSE(a,d,g), Bias(b,e,h), and Correlation(c,f,i) for zonal, meridional, and  wind speed. 
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Figure 20: Statistics between NCMRWF-analysis and ERA5 data (NCAna-ERA5), RMSE(a,d,g), 

Bias(b,e,h), and Correlation(c,f,i) for zonal, meridional, and  wind speed. 

 

3.3 Validation of Air temperature and Humidity: 

3.3a Validation of Air temperature: 

Wind speed, air temperature, and humidity are crucial parameters for estimating turbulent 

heat fluxes. These fluxes play a vital role in air-sea interaction processes that occur at the 

ocean-atmosphere interface and are essential for driving ocean models. Since no satellite 

observations are available for near-surface air temperature and humidity, these parameters 

are acquired from atmospheric reanalysis and analysis fields to compute the turbulent fluxes 

using bulk formula. On the other hand, in-situ observation to compute these fluxes are 

available but only at few locations. However, these in-situ observations can be used to 

evaluate the analysis or reanalysis products. Errors in the input parameters for turbulent 

fluxes can significantly impact the accuracy of the fluxes themselves. Previous studies 

(Swain et al., 2009, Rahman et al., 2013) have evaluated the importance of wind speed, air 

temperature, and relative humidity in the estimation of turbulent fluxes. Here, we have 

evaluated the NCMRWF analysis of air temperature and humidity (RH/SH) with RAMA 

buoy observations, along with other sources such as NCMRWF reanalysis (IMDAA), ERA5 
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reanalysis, and OAFlux (an integrated product of blended satellite and analysis data). The 

locations of the RAMA buoy data used for the present study are detailed in Table 3. 

 
Figure 21:RAMA-Buoy, NCMRWF analysis, NCMRWF reanalysis, ERA5 reanalysis and OAFlux 

data air temperature (3m) at a)0ºN 67ºE, b)5ºS 95ºE, and c)8ºS 95ºE locations 

 
Figure 22: NCMRWF analysis air temperature  at 2m and 3m at a)0ºN 67ºE, b)5ºS 95ºE, and c)8ºS 

95ºE locations. 
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 The temporal variability of air temperature from in-situ (RAMA buoy) 

measurements, along with NCMRWF analysis, NCMRWF reanalysis, ERA5 reanalysis, and 

OAFlux at respective buoy locations, are shown in Figures 21. The time series of air 

temperature at different buoy locations shows that all products exhibit similar variations with 

slight deviations from the buoy air temperature. ERA5 air temperature estimates are 

consistently lower compared to the observed air temperature data from the buoys at their 

respective locations (Figures 21), with the deviation being minimal from June to December. 

ERA5 is underestimated largely during wintertime over the southeastern Indian Ocean 

(Figure 21b). Buoy air temperature is available at a 3m height, while NCMRWF analysis, 

NCMRWF reanalysis, ERA5 reanalysis, and OA datasets air temperatures are available at 

2m. Therefore, the air temperature was corrected from 2m to 3m, and no significant 

difference was observed in air temperature before and after the height correction, as shown 

in Figure 22. 

 
Figure 23: a) RMSE, b) Bias, c) Correlation between RAMA buoy observed air temperature (ºC) and 

NCMRWF analysis, NCMRWF reanalysis, ERA5 and OAFlux air temperature at respective 

buoy locations. 
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Figure 24: Frequency distribution of RAMA buoy Air temperature (black-bar), and NCMRWF 

analysis Air temperature (red-bar) over a)4°S 57°E, b)0°N 67°E, c)8°N 90°E, d)5°S 95°E, 

e)0°N 90°E, f)8°S 95°E locations. 

 Figure 23 shows the RMSE, BIAS, and CC of air temperature at different buoy 

locations. The statistical analysis shows that NCMRWF analysis and NCMRWF reanalysis 

are better correlated with buoy air temperature compared to OAFlux and ERA5 (Table -7). 

NCMRWF analysis and NCMRWF reanalysis exhibit low RMSE (<0.6 ºC) and low bias (0 

to -0.25 ºC), followed by OAFlux (RMSE: 0.5-1 ºC, Bias: 0 to -0.75ºC) and ERA5 (RMSE: 

1-1.5 ºC, Bias: -0.75 to -1.25 ºC). All datasets show high correlation at 8 ºS 95 ºE, followed 

by 4 ºS 57 ºE, 5 ºS 95 ºE, 8 ºN 90 ºE, 0 ºN 67 ºE, and 0 ºN 90 ºE. The NCMRWF analysis 

air temperature correlation at these locations is 0.95, 0.89, 0.89, 0.84, 0.80, and 0.72 with 

buoy air temperature, respectively. ERA5, NCMRWF reanalysis, and OAFlux show similar 

correlations at all buoy locations except at 0ºN 67ºE, as shown in Figure 23c. The frequency 

distribution indicates that, at almost all locations, in the air temperature range between 27º-

29°C, the NCMRWF analysis is higher than buoy observations. However, air temperatures 

above 29°C are underestimated in the NCMRWF analysis compared to observations (Figure 

24). Table 7 shows the statistics between buoy air temperature and NCMRWF analysis, 

reanalysis, ERA5, and OAFlux air temperature. 
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Table 7: Statastics between RAMA buoy observed Air temperature, NCMRWF reanalysis, ERA5 reanalysis, and Objectively analyzed flux air temperature 

(°C). N-number of observations 

 

 

 

 

 

 

 

 

 

 

  

 

    Buoy-NCMRWF Analysis Buoy-NCMRWF Reanalysis Buoy-ERA5 Reanalysis Buoy-OAFlux  

S.No Location RMSE Cor 

BIAS-

NCF-OBS RMSE Cor 

BIAS-

NCR-OBS 

RMS

E Cor 

BIAS-

ERA-OBS RMSE Cor 

BIAS-

OA-OBS 

N 

1 4°S 57°E 1.03 0.69 -0.62 1.06 0.62 -0.53 1.71 0.63 -1.47 1.17 0.66 -0.80 729 

2 0°N 67°E 0.51 0.80 -0.15 0.52 0.77 -0.07 1.27 0.79 -1.16 0.74 0.71 -0.45 729 

3 8°N 90°E 0.44 0.84 -0.23 0.50 0.79 -0.27 1.21 0.80 -1.14 0.76 0.79 -0.63 220 

4 5°S 95°E 0.44 0.89 -0.10 0.53 0.85 -0.16 1.02 0.82 -0.86 0.53 0.84 -0.17 725 

5 8°S 95°E 0.38 0.95 -0.18 0.44 0.94 -0.20 0.93 0.90 -0.81 0.47 0.92 -0.21 504 

6 0°N 90°E 0.62 0.72 -0.23 0.65 0.71 -0.27 1.27 0.75 -1.14 0.66 0.71 -0.29 201 
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3.3b Spatial variability of Air temperature:  

 

Figure 25: Averaged Air temperature (°C) from 2019-2020: (a) NCMRWF Analysis, (b) NCMRWF 

Reanalysis, (c) ERA5, and (d) OAFlux. 

  In the previous section, we found that NCMRWF analysis performed best when 

compared with buoy observations. Hence, we used NCMRWF analysis to evaluate the 

spatial distribution of air temperature from other products. The spatial distribution of air 

temperature from different datasets, such as NCMRWF analysis, NCMRWF reanalysis, 

ERA5 reanalysis, and OAFlux, over the Indian Ocean for the 2019 and 2020 mean are shown 

in Figure 25. All datasets show a similar spatial pattern of air temperature. However, ERA5 

underestimates by ~ 1° C as compared to other products. This can be seen in the seasonal 

bias plots (Figure 27 e,f,g,h). NCMRWF analysis and NCMRWF reanalysis exhibit almost 

the same air temperatures despite having different spatial resolutions. OAFlux shows slightly 

lower temperatures than NCMRWF analysis, while ERA5 shows the lowest temperatures 

across all datasets. The seasonal distribution of air temperature is shown in Figure 26. This 

also shows similar variations in the annual mean.  
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Figure 26: Seasonal averaged Air temperature (°C) (from 2019 to 2020) of NCMRWF analysis (a-

d), NCMRWF reanalysis (e-h), ERA5 reanalysis (i-l), and OAFlux (m-p) data. 

 
Figure 27: Seasonal Air temperature  (°C)  bias of NCMRWF reanalysis (a-d; NCana-NCreana), 

ERA5 reanalysis (e-h; NCana-ERA5), OAFlux(i-l;Ncana- OAFlux) with NCMRWF 

analysis air temperature  (°C). 
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These datasets show higher temperatures over the extensive area of the study region, 

with peak warming during the pre-monsoon season, followed by the southwest monsoon, 

and cooling during the northeast monsoon and winter (Figure 26). The lowest air 

temperatures are observed in ERA5 compared to the remaining datasets. Seasonal bias 

indicates minimal bias with NCMRWF reanalysis air temperature (-0.3º to 0.3º C) across all 

seasons, showing a close agreement with the NCMRWF analysis air temperature, followed 

by OAFlux (bias: -0.6º to 0.6º C) and ERA5 (bias: 1.5º C lower than NCMRWF analysis) 

(Figure 27). 

 
Figure 28: Statistics between NCMRWF analysis and NCMRWF, NCMRWF analysis and ERA5 

reanalysis, and NCMRWF analysis and OAFlux. RMSE (a, d, g), Bias (b, e, h), and 

Correlation (c, f, i) for air temperature (°C) 

  

The statistics collectively illustrate the differences in performance and agreement 

between NCMRWF analysis, NCMRWF reanalysis, ERA5  reanalysis, and OAFlux datasets 

(Figure 28). NCMRWF reanalysis air temperature significantly matches with NCMRWF 

analysis air temperature, with low RMSE (<0.5º C), low bias (-0.3 to 0.3º C), and high 
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correlation (>0.8) over the study region (Figure 28, lower panel). The NCMRWF reanalysis 

data and OAFlux show slight deviations from NCMRWF analysis air temperature, with 

higher RMSE (>0.8º C) and higher bias (>0.5º C) along the coasts, and lower correlation 

near the equatorial region (0.6-0.8, 10ºN-10ºS). ERA5 air temperature is significantly 

underestimated compared to NCMRWF analysis, with high RMSE (>0.6º C, excluding the 

western Arabian Sea), high bias (0.5º C), and low correlation near the equator (0.6-0.8, 10ºN-

10ºS). Overall, NCMRWF reanalysis and OAFlux air temperatures match better with 

NCMRWF analysis air temperature than ERA5 air temperature. 

3.4a Validation of Humidity: 

 
Figure 29: Comparison of Relative Humidity from RAMA buoy, NCMRWF analysis, NCMRWF 

reanalysis, ERA5 reanalysis, and OAFlux at the following locations: a) 4ºS 67ºE, b) 0ºN 

67ºE, and c) 5ºS 95ºE 
 

The time-series of RAMA buoy relative humidity (RH%) along with NCMRWF 

analysis, NCMRWF reanalysis, ERA5 reanalysis, and OAFlux datasets over the respective 

buoy locations (listed in Table 7, 8) are shown in Figure 29 (for the locations: 4ºS 67ºE,  0ºN 

67ºE, and 5ºS 95ºE). All datasets exhibit similar variability of RH compared to buoy RH 

with slight deviations. However, Figure 29 clearly illustrates that NCMRWF analysis and 

reanalysis underestimate RH compared to buoy observations, while ERA5 and OAFlux 

overestimate RH relative to buoy RH for most of 2019 and 2020. The reanalysis and satellite 

datasets provide the specific humidity at 2m. The height was corrected to 3m, and RH was 
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computed from the specific humidity. Hence, the  NCMRWF analysis-specific humidity at 

2m and 3m (corrected from 2m to 3m to match the buoy observations at 3m) displays no 

significant difference before and after the height correction(Figure 30). 

 
Figure 30: NCMRWF analysis specific humidity at 2m and 3m at a) 4ºS 67ºE, b) 0ºN 67ºE, and c) 

5ºS 95ºE 

 
Figure 31: a)RMSE, b)Bias, c)Correlation between RAMA buoy observed Relative humidity (%) 

and NCMRWF analysis, NCMRWF reanalysis, ERA5 and OAFlux Relative humidity at 

respective buoy locations. 
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Figure 32: Frequency distribution of RAMA buoy Relative Humidity (black-bar), and NCMRWF 

analysis Relative Humidity (red-bar) over a)4°S 57°E, b)0°N 67°E, c)8°N 90°E, d)5°S 95°E, 

e)0°N 90°E, f)8°S 95°E locations. 

 The NCMRWF analysis and reanalysis show the lowest RMSE and bias 

(underestimated than observation), as well as a high correlation with observations. ERA5 

also performs well, although it shows higher bias (overestimated than observation) even 

compared to the NCMRWF datasets, except at 4°S 57°E. The OAFlux data tend to have 

higher RMSE and bias (overestimated than observation) values when compared with 

observed buoy relative humidity. The correlation analysis shows that the NCMRWF analysis 

has the highest correlation with buoy relative humidity, while the OAFlux data exhibit the 

least correlation at all locations (Table 8, Figure 31). 

 The frequency distribution (Figure 32) of NCMRWF analysis and observed buoy RH 

shows that the NCMRWF analysis is overestimating the buoy-observed RH at 4°S 57°E, 5°S 

95°E, and 8°S 95°E for RH <78%. However, at 8°N 90°E and 0°N 90°E, the NCMRWF 

analysis RH is overestimated when RH is <76%, and at 0°N 67 °E, when RH is <72%. 
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Table 8: Statastics between RAMA buoy observed Relative humidity, NCMRWF reanalysis, ERA5 reanalysis, and Objectively analyzed flux 

Relative Humidity (%). N-number of observations 

    
Buoy-NCMRWF 

Analysis 

Buoy-NCMRWF 

Reanalysis Buoy-ERA5 Reanalysis Buoy-OAFlux 

 

S.No Location RMSE Cor 

BIAS-

NCF-

OBS RMSE Cor 

BIAS-

NCR-

OBS RMSE Cor 

BIAS-

ERA-

OBS RMSE Cor 

BIAS-OA-

OBS 

N 

1 4°S 57°E 4.37 0.82 -3.23 3.83 0.81 -2.17 3.29 0.76 0.73 3.57 0.69 2.88 729 

2 0°N 67°E 3.86 0.77 -2.76 3.29 0.69 -1.65 4.08 0.71 2.54 4.48 0.55 3.31 729 

3 8°N 90°E 2.93 0.85 -2.08 3.00 0.79 -1.77 3.27 0.84 2.41 4.15 0.75 2.52 220 

4 5°S 95°E 2.46 0.80 -1.04 2.60 0.71 -0.20 4.05 0.68 2.73 3.98 0.57 2.46 725 

5 8°S 95°E 2.48 0.81 -0.70 2.47 0.78 -0.37 3.37 0.76 1.93 4.12 0.53 2.45 504 

6 0°N 90°E 3.20 0.80 -1.75 3.12 0.79 -1.70 3.83 0.75 2.38 3.88 0.71 2.38 201 
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3.4b Spatial variability of Specific Humidity (Qa): 

Similar to air temperature for Specific Humidity too, NCMRWF analysis performs best 

among all when compared with buoy observations. Hence, NCMRWF analysis specific 

humidity was used to evaluate other products for spatial variation. The spatial distribution 

of two years mean (from 2019  to 2020) specific humidity (Qa, in g/kg) from the NCMRWF 

analysis, reanalysis, ERA5, and OAFlux  are shown in Figure 33. The spatial distribution of 

Qa indicates that all datasets show similar distribution and variability. OAFlux is the highest 

estimated, and ERA5 is the lowest estimated specific humidity compared to the NCMRWF 

analysis. 

 

 

Figure 33: Annual averaged Specific humidity (Qa) (2019-2020): (a) NCMRWF Analysis, (b) 

NCMRWF Reanalysis, (c) ERA5, and (d) OAFlux. 
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Figure 34: Seasonal averaged Specific humidity (Qa) (from 2019 to 2020) of NCMRWF analysis (a-

d), NCMRWF reanalysis (e-h), ERA5 reanalysis (i-l), and OAFlux (m-p) data. 
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Figure 35: Seasonal Specific humidity (Qa)  bias of NCMRWF reanalysis (a-d; NCana-NCreana), 

ERA5 reanalysis (e-h; NCana-ERA5), OAFlux (i-l;Ncana- OAFlux) with NCMRWF 

analysis Specific humidity (Qa). 

  

Comparing Qa across different datasets, OAFlux shows the highest Qa among all 

datasets in all seasons. The Qa distribution and variability in NCMRWF reanalysis and 

OAFlux are significantly aligned with the NCMRWF analysis Qa, with OAFlux showing 

slightly higher variability and higher values (~1 g/kg) than the NCMRWF analysis Qa 

(Figure 34), especially in the Arabian Sea and south of the equator. Seasonal bias (Figure 

35) clearly illustrates that NCMRWF reanalysis and ERA5 show less bias (-0.5 to 0.5 g/kg), 

and both datasets overestimate Qa over the Arabian Sea in winter, pre-monsoon and 

northeast monsoon seasons. OAFlux consistently overestimates Qa across the large areas of 

the study region in all seasons by more than -0.5 g/kg, with the highest bias in the Arabian 

Sea during the pre-monsoon season and the least in the monsoon season (Figure 35).  
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Figure 36: Statistics between NCMRWF analysis and NCMRWF, NCMRWF analysis and 

ERA5 reanalysis, and NCMRWF analysis and OAFlux. RMSE (a, d, g), Bias (b, e, h), 

and Correlation (c, f, i)  for Specific Humidity. 

 

 The statistics between the NCMRWF analysis and NCMRWF reanalysis, ERA5, and 

OAFlux are illustrated in Figure 36, showing RMSE (a, d, g), bias (b, e, h), and correlation 

(c, f, i). OAFlux exhibits high RMSE and bias (OA Qa is higher than NCMRWF analysis 

Qa), particularly in the Arabian Sea (>1 g/kg), and lower correlation (0.4 to 0.7) between 

10°N and 10°S. Similar patterns, with lower RMSE and bias, are observed in the NCMRWF 

reanalysis and ERA5 compared to the NCMRWF analysis Qa. However, the lowest 

correlation (0.7) is observed between 10°N and 10°S. All datasets show a good correlation 

(more than 0.9) in the northern Indian Ocean. 

4. Summary and Conclusion: 

The Indian summer monsoon is crucial for the country in various aspects, including 

agriculture, water resources, and economic stability. Hence, reliable monsoon forecasts are 

essential. INCOIS provides near real-time global analysis with the Global Ocean Data 

Assimilation System (GODAS), which was adopted from NOAA/NCEP in 2013. This 
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analysis is used for the crucial initial conditions for the CFSv2 coupled model, which was 

used for the seasonal Indian Summer Monsoon Rainfall (ISMR) forecast. Accurate ocean 

initialization is required for better ISMR seasonal prediction. GODAS analysis was 

produced using the forcing fields from NCMRWF GFS atmospheric analysis. Bulk-

algorithm is used to compute turbulent heat and momentum fluxes using the near-surface 

NCMRWF analysis fields. Studies show that errors in the input fields, particularly near-

surface wind, air temperature, and humidity, significantly affect the heat and momentum flux 

computation using a bulk algorithm. Hence, we evaluate the performance of NCMRWF near-

surface atmospheric fields, for 2019 and 2020 using RAMA buoy observations. We also 

evaluated NCMRWF reanalysis, ERA5 reanalysis, and CCMP3-satellite-derived surface 

wind fields and the near-surface AT and RH. This evaluation was conducted quantitatively 

using several statistical measures. The statistical errors were estimated using the two years 

of collocated data for NCMRWF and buoy surface zonal (u) and meridional (v) wind 

components, air temperature, and specific humidity. 

  Since observed RAMA buoy winds are available at a 4m height and other datasets 

provide winds at a 10m height, an algorithmic method was used to correct the wind height 

from 10m to 4m. We then performed error statistics (mean, bias, RMSE, standard deviation, 

and correlation), which revealed that the NCMRWF analysis matched well with observed 

buoy winds at all locations, followed by NCMRWF reanalysis, ERA5 reanalysis, and 

CCMP3. However, high RMSE, bias, and low correlation were noted in the southeast 

equatorial region for the NCMRWF analysis fields. CCMP3 has shown high RMSE and low 

correlation at all locations with buoy winds. The zonal and meridional wind frequency 

distribution diagrams indicate that NCMRWF analysis overestimates the low wind regime  

(-2 to 2 m/s)  compared to observed winds at 95°E 5°S and 95°E 8°S. The same results were 

also found for the low wind speeds of less than 2 m/s. NCMRWF analysis winds correlate 

better with observed winds than NCMRWF reanalysis, ERA5 reanalysis, and CCMP3 winds. 

The spatial distribution of wind fields shows similar patterns for all products. However, 

ERA5 reanalysis underestimates other fields by ~ 0.5-1 m/s. Overall, NCMRWF wind 

performs best among all, and satellite-derived wind CCMP  performs poorest when 

compared with buoy observations.  

 NCMRWF analysis, NCMRWF reanalysis, ERA5, and OAFlux air temperature and 

specific humidity are available at a 2 m height, while RAMA buoy relative humidity is 

available at a 3m height. Therefore, all  air temperatures and specific humidity were 

corrected to a 3m height for comparison (relative humidity computed from specific humidity 

at 3 m). Time series analysis shows all the products are able to capture the daily observed 

AT variations. However, all products underestimate the air temperature compared to buoy-
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observed air temperature. ERA5 air temperature is lower than the observed air temperature 

and even lower than NCMRWF analysis, reanalysis, and OAFlux air temperatures. The 

frequency distribution shows that, at almost all locations, the NCMRWF analysis is higher 

than buoy observations in the air temperature range between 27-29°C. The overall statistics 

show RMSE values are the least in NCMRWF analysis ( ~ 0.5 C) and highest in ERA5 ( ~ 

1 m/s) (Table -7). The spatial distribution and variability of the NCMRWF analysis, 

NCMRWF reanalysis, ERA5 reanalysis, and OAFLUX  air temperature show the same 

pattern, with ERA5 estimating lower air temperatures compared to all other products.  

 Similar to AT, RH also could able to capture the observed daily variability. However, 

the NCMRWF analysis and NCMRWF reanalysis underestimate relative humidity compared 

to buoy-observed relative humidity, while ERA5 and OAFlux overestimate it. Among all 

datasets, the NCMRWF analysis shows the highest correlation with buoy relative humidity, 

followed by NCMRWF reanalysis, ERA5, and OAFlux. The frequency distribution of 

NCMRWF analysis and buoy-observed relative humidity shows that the NCMRWF analysis 

overestimates the buoy-observed relative humidity at 4°S 57°E, 5°S 95°E, and 8°S 95°E for 

relative humidity <78%. However, at 8°N 90°E and 0°N 90°E, the NCMRWF analysis 

overestimates relative humidity when it is <76%, and at 0°N 67 °E, when it is <72%. 

 The specific humidity from NCMRWF analysis is compared with NCMRWF 

reanalysis, ERA5, and OAFlux. Spatial distribution and time series analysis show that 

OAFlux tends to overestimate specific humidity compared to all other datasets. The 

NCMRWF analysis data performs best among all other products when compared with buoy 

observations. The RMSE values are higher in OAFlux and ERA5 ( ~ 4 %), but it's less in 

NCMRWF analysis and reanalysis ( ~ 3 %) products with the least values in NCMRWF 

analysis. Biases are also of similar order (Table 8). This analysis shows that among all 

products, NCMRWF analysis fields perform best among all. With respect to NCMRWF and 

ERA5 reanalysis, NCMRWF outperformed.  
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